





President: Pier Luigi Zinzani Co-President: Michele Cavo

Bologna, Royal Hotel Carlton January 15-17, 2024

**BOLOGNA** BOLOGNA, ROYAL HOTEL CARLTON



SERVIZIO SANITARIO REGIONALE EMILIA-ROMAGNA Azienda Ospedaliero - Universitaria di Bologni

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA DIPARTIMENTO DI SCIENZE MEDICHE E CHIRURGICHE



President: Pier Luigi Zinzani Co-President: Michele Cavo

Bologna, Royal Hotel Carlton January 15-17, 2024

#### **Disclosures of Marilena Ciciarello**

| Company name | Research support | Employee | Consultant | Stockholder | Speakers bureau | Advisory board | Other |
|--------------|------------------|----------|------------|-------------|-----------------|----------------|-------|
| none         |                  |          |            |             |                 |                |       |

## Immunotherapy in AML: targeting immunosuppressive microenvironment

Marilena Ciciarello, PhD

CNR Institute of Molecular Genetics IRCCS Istituto Ortopedico Rizzoli Alma Mater Studiorum - University of Bologna

### Cancer immunotherapy history



### stromal/immune ME in AML



#### Immune suppressive mechanisms

#### Intrinsic

- secretion of immunesuppressive factors (e.g., IDO, arginine, ROS, adenosine)
- Defective apoptosis
- Modulation of ICs
- Loss tumor antigen expression

#### Extrinsic

- Innate immune response (e.g., Suppression of NK-mediated cytotoxity; DCs inhibition by immature NKs)
- Disfunctional exhausted T cells (PD1, TIM3)
- Increased T regs
- Immunesuppressive CKs' production

Adapted from D. Ocadlikova

# Single-Cell RNA-seq reveals AML hierarchies relevant to disease progression and immunity



## **Differentiated malignant AML cells** contribute to the immunosuppressive microenvironment

- inhibit T-cell activation
- contribute to altered T-cell phenotypes
- express <u>immunomodulatory genes</u>



15

15

### IFN- $\gamma^{high}$ AML cells hold an inflammatory and immune gene signature



### **Gene expression correlations**



### immune-tolerance genes

**IFN-γ** signature results poor overall survival in AML patients





Time (days)

### High inflammatory score is associated with adverse ELN risk group and prognostically stratifies AML patients



Sci Transl Med. 2020 June 03; 12(546): . doi:10.1126/scitranslmed.aaz0463.

## Immune landscapes predict chemotherapy resistance and immunotherapy response in acute myeloid leukemia

Jayakumar Vadakekolathu<sup>1</sup>, Mark D. Minden<sup>2</sup>, Tressa Hood<sup>3</sup>, Sarah E. Church<sup>3</sup>, Stephen Reeder<sup>1</sup>, Heidi Altmann<sup>4</sup>, Amy H. Sullivan<sup>3</sup>, Elena J. Viboch<sup>3</sup>, Tasleema Patel<sup>5</sup>, Narmin Ibrahimova<sup>2</sup>, Sarah E. Warren<sup>3</sup>, Andrea Arruda<sup>2</sup>, Yan Liang<sup>3</sup>, Thomas H. Smith<sup>3</sup>, Gemma A. Foulds<sup>1</sup>, Michael D. Bailey<sup>3</sup>, James Gowen-MacDonald<sup>3</sup>, John Muth<sup>6</sup>, Marc Schmitz<sup>7,8,9</sup>, Alessandra Cesano<sup>3</sup>, A. Graham Pockley<sup>1,10</sup>, Peter J.M. Valk<sup>11</sup>, Bob Löwenberg<sup>11</sup>, Martin Bornhäuser<sup>4,8,9</sup>, Sarah K. Tasian<sup>5</sup>, Michael P. Rettig<sup>12</sup>, Jan Davidson-Moncada<sup>6</sup>, John F. DiPersio<sup>12</sup>, Sergio Rutella<sup>1,10,\*</sup>



### stromal/immune ME in AML



#### Immune suppressive mechanisms

#### Intrinsic

- secretion of immunesuppressive factors(e.g., IDO, arginine, ROS, adenosine)
- Defective apoptosis
- Modulation of ICs
- Loss tumor antigen expression

#### **Extrinsic**

- Innate immune response (e.g., Suppression of NK-mediated cytotoxity; DCs inhibition by immature NKs)
- Disfunctional exhausted T cells (PD1, TIM3)
- Increased T regs
- Immunesuppressive CKs' production

### T regs are increased and hyperfunctional in de novo AML



### IFN-γ production by AML cells results in high BM Tregs



Corradi et a., Clin Cancer Res. 2022; 28:3141-3155

### stromal/immune ME in AML



#### Immune suppressive mechanisms

#### Intrinsic

- secretion of immunesuppressive factors(e.g., IDO, arginine, ROS, adenosine)
- Defective apoptosis
- Modulation of ICs
- Loss tumor antigen expression

#### **Extrinsic**

- Innate immune response (e.g., Suppression of NK-mediated cytotoxity; DCs inhibition by immature NKs)
- Disfunctional exhausted T cells (PD1, TIM3)
- Increased T regs
- Immunesuppressive CKs' production
- Stromal-dependent rewiring?

Adapted from D. Ocadlikova





### stromal/immune ME in AML



#### Immune suppressive mechanisms

#### Intrinsic

- secretion of immunesuppressive factors(e.g., IDO, arginine, ROS, adenosine)
- Defective apoptosis
- Modulation of ICs
- Loss tumor antigen expression

#### Extrinsic

- Innate immune response (e.g., Suppression of NK-mediated cytotoxity; DCs inhibition by immature NKs)
- Disfunctional exhausted T cells (PD1, TIM3)
- Increased T regs
- Immunesuppressive CKs' production
- Modulation of ICs

Adapted by D. Ocadlikova

### Inflammation and CKIs in the ME



### stromal/immune ME in AML



### Therapy

#### Immune suppressive mechanisms

#### Intrinsic

- secretion of immunesuppressive factors (e.g., IDO, arginine, ROS, adenosine)
- Defective apoptosis
- Modulation of ICs
- Loss tumor antigen expression

#### Extrinsic

- Innate immune response (e.g., Suppression of NK-mediated cytotoxity; DCs inhibition by immature NKs)
- Disfunctional exhausted T cells (PD1, TIM3)
- Increased T regs
- Immunesuppressive CKs' production

Adapted from D. Ocadlikova

#### Immune 'side-effect' of therapies Immunogenic cell stress response Chemotherapy **Tolerogenic cell death** Immunogenic modulation Immunogenic cell death Rapid plasma membrane rupture Calreticulin translocation Calreticulin translocation Downregulation of anti-apoptotic/pro-survival genes HMGB1 secretion **Cell stress** Upregulation of death receptors ATP secretion Genotoxic stress Type I IFN secretion Upregulation of M6PR ER stress Upregulation of activating NK receptor ligands Metabolic stress Upregulation of costimulatory ligands Bownregulation of inhibitory signals △ Upregulation of TAAs, MHC I and APM Activated DCs Increased Endogenous immune cell killing T cell induction

### Immunetherapy synergistic strategies

Leukemia (2004) 18, 1223–1230 & 2004 Nature Publishing Group All rights reserved 0887-6924/04 \$30.00

www.nature.com/leu

Cytosine arabinoside induces costimulatory molecule expression in acute myeloid leukemia cells

R Vereecque<sup>1,2,4</sup>, A Saudemont<sup>1,2,4</sup> and B Quesnel<sup>1,2,3</sup>

Chemotherapy+ICIs

frontiers in IMMUNOLOGY



### Augmenting antitumor immune responses with epigenetic modifying agents

Erika Héninger<sup>1</sup>, Timothy E. G. Krueger<sup>1</sup> and Joshua M. Lang<sup>1,2</sup>\*



#### EMAs enhance anti-tumor immune responses and tumor clearance







**Methods** 



Zannoni et al., Unpublished data. Please do not share



Zannoni et al., unpublished data. Please do not share

January 15-17, 2024 BOLOGNA, ROYAL HOTEL CARLTON



### **IMMUNETHERAPY BALANCE**



#### Transcan-3 JTC 2021



| Thanks to: | Darina Očadlíková<br>Giulia Corradi<br>Valentina Salvestrini<br>Dorian Forte<br>Karyna Volkava<br>Emma Campazzi<br>Antonio Curti<br>Cell Therapy lab | Letizia Zannoni<br>Chiara Sartor<br>Gianluca Cristiano<br>Jacopo Nanni<br>Cristina Papayannidis<br>Stefania Paolini<br>AML/MDS group<br>Seragnoli<br>D | Lorenza Bandini<br>Emanuela Ottaviani<br><i>Molecular Biology</i><br>Milena Piccioli<br>Elena Sabattini<br><i>Pathology</i><br>Seragnoli Institute of Hematology - Bologna<br>Director: Prof. Michele Cavo |  |  |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|            | Sabina Sangaletti<br>Barbara Bassani<br>Mario Colombo<br>Istituto Nazionale<br>dei tumori, Milano                                                    | Giorgia Simonetti<br>Giovanni Martinelli<br>IRST, Meldola                                                                                              | Jayakumar Vadakekolathu<br>Sergio Rutella<br><b>Nottingham Trent University,</b><br>UK                                                                                                                     |  |  |
|            | WHER STORED<br>WHERE STORED<br>SOCIAZIONE ITALIANA<br>SEZIONE<br>SEZIONE<br>O                                                                        | GNACCONTRO LE LEUCEMIE-LINFOMI<br>DI BOLOGNA<br>N L U S<br>BBREE<br>HOOS                                                                               | Consiglio<br>Nazionale delle<br>Ricerche<br>NUTRAGE<br>Consiglio Nazionale delle Ricerche                                                                                                                  |  |  |