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(e.g.,  IDO, arginine, ROS, adenosine)
• Defective apoptosis
• Modulation of ICs
• Loss tumor antigen expression

Extrinsic
• Innate immune response (e.g., 

Suppression of NK-mediated cytotoxity; 
DCs inhibition by immature NKs)

• Disfuntional exhausted T cells (PD1, 
TIM3)

• Increased T regs
• Immunesuppressive CKs’ production
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Van Galen P, Cell, Volume 176, 2019, Pages 1265-1281

Single-Cell RNA-seq reveals AML hierarchies relevant to disease
progression and immunity

Differentiated malignant AML cells contribute to the 
immunosuppressive microenvironment

• inhibit T-cell activation 
• contribute to altered T-cell phenotypes
• express immunomodulatory genes
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High inflammatory score is associated with 
adverse ELN risk group and prognostically
stratifies AML patients

Lasry A et al, Nature Cancer, January 2023, 27-42
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Wang Y et al, BMC Cancer. 2020; 20: 472

T regs are increased and hyperfunctional in de novo AML
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Inflammation and CKIs in the ME
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Immune ‘side-effect’ of therapies



Cytosine arabinoside induces costimulatory molecule expression in acute myeloid
leukemia cells

R Vereecque1,2,4, A Saudemont1,2,4 and B Quesnel1,2,3

1Unité INSERM 524, Institut de Recherche sur le Cancer de Lille, Lille, France; 2Institut de Médecine Prédictive et de Recherche
Thérapeutique, Lille, France; and 3Service des Maladies du Sang, Centre Hospitalier et Universitaire de Lille, Lille, France

Chemotherapeutic drugs kill cancer cells mainly by direct
cytotoxicity, but they might also induce a stronger host immune
response by causing the tumor to produce costimulatory cell
surface molecules like CD80. We previously reported that in
myeloid leukemic cells, c-irradiation induced CD80 expression.
In this study, we show that cytosine arabinoside (Ara-C), even
at low doses, induced CD80 expression in vitro in mouse DA1-
3b leukemic cells, by a mechanism that involved reactive
oxygen species. In vivo experiments in the mouse DA1-3b/C3H
whole-animal acute myeloid leukemia (AML) model showed that
injection of Ara-C induced expression of CD80 and CD86, and
decreased expression of B7-H1, indicating that chemotherapy
can modify costimulatory molecule expression in vivo, in a way
not necessarily observed in vitro. Mouse leukemic cells
exposed in vivo to Ara-C were more susceptible to specific
cytotoxic lymphocyte (CTL)-mediated killing. Ara-C also in-
duced CD80 or CD86 expression in 14 of 21 primary cultured
human AML samples. In humans being treated for AML,
induction chemotherapy increased CD86 expression in the
leukemic cells. These findings indicate possible synergistic
strategies between CTL-based immunotherapy and chemother-
apy for treatment. They also suggest an additional mechanism
by which chemotherapy can eradicate AML blasts.
Leukemia (2004) 18, 1223–1230. doi:10.1038/sj.leu.2403391
Published online 20 May 2004
Keywords: acute myeloid leukaemia; CD80; CD86; cytosine
arabinoside; cytotoxic T lymphocytes

Introduction

Chemotherapeutic drugs kill cancer cells by direct cytotoxicity,

but many reports have suggested that chemotherapy might also

help the host to acquire an immune response against the tumor.

In an animal model, and in some clinical studies, cyclopho-

sphamide, melphalan, N,N0-bis(2-chloroethyl)-N-nitrosourea,

vinblastine, and bleomycin enhanced the acquisition of T-cell-

mediated antitumor immunity.1–11 For example, in mouse

lymphoma cells, DNA-alkylating agents alleviate silencing of

class II transactivator gene.12 Another possible mechanism

could be the upregulation and/or neoexpression of costimula-

tory molecules or cytokines by tumor cells. For example, Mokyr

and co-workers13,14 showed that in the MOPC-315 mouse

plasmacytoma, melphalan, mitomycin, and g-irradiation en-

hanced CD80, INF-b, and TNF-a expression. They also

demonstrated that upregulation of CD80 by chemotherapeutic

drugs was mediated by enhanced NF-kB activity, and genera-

tion of reactive oxygen species.15 We previously reported that in

the WEHI-3b and DA1-3b murine leukemic cells, and in

primary cultured human myeloid leukemic cells, g-irradiation

induces expression of CD80.16 Thus, anticancer treatments can

modify in tumor cells the expression of molecules involved in

immune response.

Acute myeloid leukemia (AML) is treated by intensive

induction chemotherapy followed by several cycles of con-

solidation therapy. The direct cytotoxic effect of chemotherapy

induces most of the reduction of the leukemic mass, but an

antileukemic immune response might also help to maintain

patients in complete remission. Chemotherapy during minimal

residual disease might modify the expression of costimulatory

molecules or cytokines on the leukemic cells. To examine if

chemotherapeutic drugs used in AML could modulate the

immune response against leukemic cells, we first exposed the

DA1-3b murine leukemic cell line to cytosine arabinoside (Ara-

C) in vitro, and then in a whole-animal model, and analyzed

expression of costimulatory molecules CD80, CD86, and B7-H1

(PD-L1) which has been recently reported as an inhibitor of

antitumor T-cell immunity.17,18 We then tested the susceptibility

of leukemic cells exposed to Ara-C to lysis by cytotoxic T

lymphocytes (CTL). Finally, we measured the expression of

costimulatory molecules induced by Ara-C in primary cultured

leukemic cells from patients with AML.

Material and methods

Cells, tissue samples, and culture conditions

The mouse leukemic DA1-3b cell line was maintained in liquid

culture in DMEM medium (Life Technologies, Gaithersburg,

MD, USA) supplemented with 10% fetal calf serum (FCS),

100 IU penicillin, 100 mg/ml streptomycin, and 2 mM L-gluta-

mine.19

Fresh human leukemic cells were obtained, following

informed consent, from the peripheral blood of 25 patients with

AML who had greater than 90% circulating blast cells. AML

cells were maintained in liquid culture in Iscove’s medium

(Life Technologies, Gaithersburg, MD, USA) supplemented

with 10% FCS, 100 IU penicillin, 100 mg/ml streptomycin,

2 mM L-glutamine, 20 ng/ml human recombinant stem cell

factor (SCF: Tebu, Le Perray en Yvelines, France), 8 ng/ml

interleukin 3 (IL-3; Tebu), and 20 ng/ml granulocyte–macro-

phage colony-stimulating factor (GM-CSF; Schering Plough,

Levallois Perret, France).

In vitro exposure of cells to Ara-C and other factors

Murine DA1-3b cells were incubated for at least 48 h with

0.1–4mM Ara-C, and then studied by flow cytometry. As 4 mM

Ara-C led to the best CD80 expression, this was used in all

further experiments.

In some experiments, 25–100mM N-acetyl-L-cysteine (NAC)

was added 1 h before the addition of Ara-C to inhibit NF-kb as

previously described.20 Cells were exposed to heat shock and
Received 6 September 2003; accepted 26 March 2004; Published
online 20 May 2004
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